
high enantioselectivity and good yield were ob-
served for aryl methyl ketones, with a modest
drop in enantioselectivity for electron-poor sub-
strates. Other aryl ketones gave rise to good to
excellent e.r.’s, as highlighted by substrate 2h.
Heteroaromatics were also well tolerated un-
der the reaction conditions, with thiophene- and
furan-derived ketones undergoing highly enantio-
selective propargylation reactions (2i and 2j).
Additionally, an a,b-unsaturated ketone was an
excellent substrate for enantioselective propar-
gylation, leading to a 95:5 e.r. (2p).

In the case of aliphatic ketones, the catalyst
selected on the basis of steric differentiation, giv-
ing higher e.r.’s with increased steric bulk on a
single side of the ketone (2l to 2o). An e.r. of
85:15 observed for 2-hexanone (2l) is relatively
impressive, considering that the catalyst is differ-
entiating a methyl from ann-butyl group. Groups
with substitution at the a-position of the ketone
substantially enhanced the e.r.’s, as highlighted
by ketones with a cyclohexyl (96:4 e.r., 2n ) and
a t-butyl group (98:2 e.r., 2o). Furthermore, a
g-butyrolactone (2q) could be synthesized with a
good e.r. from propargylation of an aliphatic ke-
tone with a pendant ester.

Our data suggest that steric-electronic corre-
lations provide a means for efficient optimization
of a catalytic system and are evidence for a syn-
ergistic relationship between these two classically
independent variables in reactions. This is es-
pecially attractive for optimizing reactions with
limited detailed mechanistic and structural
understanding and, considering that the model-
ing is tied to basic physical organic precepts, a
greater understanding of the underlying fea-
tures of asymmetric catalysis should result. The
application of this method is not limited to asym-
metric catalysis but can potentially be applied
to broad areas of chemistry dependent on evaluat-

ing the interplay of two (or more) effects on a
reaction outcome.
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Diurnal and Seasonal Mood Vary
with Work, Sleep, and Daylength
Across Diverse Cultures
Scott A. Golder* and Michael W. Macy

We identified individual-level diurnal and seasonal mood rhythms in cultures across the globe,
using data from millions of public Twitter messages. We found that individuals awaken in a good
mood that deteriorates as the day progresses—which is consistent with the effects of sleep and
circadian rhythm—and that seasonal change in baseline positive affect varies with change in
daylength. People are happier on weekends, but the morning peak in positive affect is delayed by 2
hours, which suggests that people awaken later on weekends.

Individual mood is an affective state that is
important for physical and emotional well-
being, working memory, creativity, decision-

making (1), and immune response (2). Mood is
influenced by levels of dopamine, serotonin, and
other neurochemicals (1), as well as by levels of

hormones (e.g., cortisol) (3). Mood is also ex-
ternally modified by social activity, such as daily
routines of work, commuting, and eating (4, 5).
Because of this complexity, accurate measure-
ment of affective rhythms at the individual level
has proven elusive.

Experimental psychologists have repeatedly
demonstrated that positive and negative affect are
independent dimensions. Positive affect (PA) in-
cludes enthusiasm, delight, activeness, and alert-
ness, whereas negative affect (NA) includes distress,
fear, anger, guilt, and disgust (6). Thus, low PA
indicates the absence of positive feelings, not the
presence of negative feelings.

Laboratory studies have shown that diurnal
mood swings reflect endogenous circadian rhythms
interacting with the duration of prior wakefulness
or sleep. The circadian component corresponds
to change in core body temperature,which is lowest
at the end of the night and peaks during late
afternoon. The sleep-dependent component is
elevated at waking and declines throughout the
day (7). Other studies have variously observed a
single PA peak 8 to 10 hours after waking (8 ), a
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plateau from noon to 9 p.m. (6), and two daily
peaks at noon and evening (4) or afternoon and
evening (5). Some PA studies have also reported
a “siesta effect” or midafternoon dip (6). Results
for NA have also been inconclusive, with peaks
observed in the midmorning (4) as well as the
afternoon (4, 5) and evening (5). Several studies
have also found that NA is not subject to diurnal
variation (6, 8 ).

Although these studies have improved our
understanding of affective rhythms, they have
relied heavily on small homogeneous samples of
American undergraduates (5, 6, 8 ) who are not
necessarily representative of the larger population
(9 ). Students are exposed to varying academic
schedules that constrain when and how much
they sleep. Further, these studies typically rely on
retrospective self-reports, a method that limits tem-
poral granularity and is vulnerable to memory er-
ror and experimenter demand effects. Researchers

have acknowledged the limitations of this meth-
odology (10 ) but have had no practical means for
in situ real-time hourly observation of individual
behavior in large and culturally diverse popula-
tions over many weeks.

That is now changing. Data from increasingly
popular online social media allow social scien-
tists to study individual behavior in real time in a
way that is both fine-grained and massively glob-
al in scale (11), making it possible to obtain pre-
cise real-time measurements across large and
diverse populations.

Several recent studies have examined the af-
fective and semantic content of messages from
online sources such as Twitter, a microblog-
ging site that records brief, time-stamped public
comments from hundreds of millions of people
worldwide (12–15). Using data from Twitter,
O’Connor et al. (13) found that opinions about
specific issues and political candidates varied

from day to day. Dodds andDanforth (14) showed
how the affective valence of songs, musicians, and
blog posts depends on the day of week, especially
holidays. In an unpublished study, Mislove et al.
(16) used Twitter messages to examine what they
refer to as the “pulse of the nation” as it varies
across the week and moves across time zones.
While avoiding the data limitations of an earlier
generation of laboratory-based experiments, these
studies, by computer and information scientists,
conflate diurnal changes within each individual
with baseline differences in affect across indi-
viduals of different chronotypes (sleep-wake
cycles), who tend to be active at different times
of the day. If “morning people” and “night owls”
differ in baseline affect, this will confound within-
individual changes in affect from morning to
night. These studies also collapsed positive and
negative affect into a single dimension, contrary
to previous research that has consistently shown
these to be largely independent dimensions. As a
consequence, the reported patterns cannot be un-
ambiguously interpreted.

Our study also uses data from Twitter, whose
140-character limit on message length allows
conversation-like exchanges. Text analysis of these
messages provides a detailed measure of individ-
uals’ spontaneous affective expressions across
the globe. We measured PA and NA using Lin-
guistic Inquiry andWord Count (LIWC), a prom-
inent lexicon for text analysis (17). The LIWC
lexicon was designed to analyze diverse genres
of text, such as “e-mails, speeches, poems, or
transcribed daily speech.” LIWC contains lists of
words or word stems that measure 64 behavioral
and psychological dimensions, including PA and
NA, as well as “anxiousness,” “anger,” and “in-
hibition.” These lists were created using emotion
rating scales and thesauruses and validated by
independent judges. Bantum andOwen (18 ) found
that for all emotional expression words, LIWC’s
sensitivity and specificity values were 0.88 and
0.97, respectively. We used a lexicon containing
only English words, and all reported results in-
clude only English speakers; the English profi-
ciency measure is described in (19 ) and its
distribution is shown in fig. S5.

We analyzed changes in hourly, daily, and
seasonal affect at the individual level in 84 iden-
tified countries (table S2). In contrast to the self-
report methodology used in offline studies, these
measures were not prompted by an experimenter,
or recollected after the fact. Rather, they were
directly obtained from comments composed by
the individuals in real time, and are therefore less
vulnerable to memory bias and experimenter de-
mand effects. Most important, instead of relying
on a small sample of American undergraduates,
we measured affective changes among millions
of Twitter users worldwide, allowing cross-societal
tests of cultural and geographic influences on af-
fective patterns.

Using Twitter.com’s data access protocol, we
collected up to 400 public messages from each
user in the sample, excluding users with fewer

Fig. 1. Hourly changes in individual affect broken down by day of the week (top, PA; bottom, NA). Each
series shows mean affect (black lines) and 95% confidence interval (colored regions).

Fig. 2. Hourly changes in individual affect in four English-speaking regions. Each series shows mean
affect (black lines) and 95% confidence interval (colored regions).
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than 25messages. The resulting corpus contained
about 2.4 million individuals from across the globe
and 509 million messages authored between
February 2008 and January 2010 (tables S1 to S4).

We removed between-individual differences
bymean-centering the measures of PA andNA at
the individual level (19 ). (Between-individual ef-
fects are shown in fig. S2). Figure 1 shows hourly
and daily changes in within-individual PA and
NA for English-speaking individuals worldwide,
in local time, including 95% confidence intervals.
The shapes of the affective rhythms were nearly
identical across days of the week for both PA and
NA. PA had two peaks: relatively early in the
morning and again near midnight. Although the
shape of the rhythm was consistent across days,
PA levels were generally higher on Saturday and
Sunday (M = 0.058) than at any time during the
weekdays (M = 0.054, P < 0.001), which points
to possible effects of work-related stress, less sleep,
and earlier wake time. PA decreased midmorning
(at the start of the work day) and increased in the
evening (at the end of the work day). However, the
fact that the shape of the affective cycle was sim-
ilar on weekends and weekdays points to sleep
and the biological clock as important determinants
of affect, regardless of variations in environmental
stress. Moreover, the morning (3 a.m. to noon)
peak on Saturday and Sunday was delayed by
nearly 2 hours (M=9:48 a.m. versusM=7:55 a.m.,
P<0.001)—the amount of time that peoplemight
be expected to “sleep in,” allowing themselves to
be awakened, not by the alarm clock, but by the
body clock.

NA was lowest in the morning and rose
throughout the day to a nighttime peak; this pat-
tern also suggests that peoplemay be emotionally
“refreshed” by sleep. Relative to PA, NA varied
less with the exception that themorning troughwas
lower on the weekend. The pattern also supports
the assumption that PA and NAvary independently
and are not opposite ends of a single dimension.

NA is neither the mirror image of PA, nor do the
two measures move consistently in parallel. This
independence is reflected in the small correlation
(r = –0.08).

These patterns varied for individuals of dif-
ferent chronotypes. Most people are most active
in the afternoon and evening (19 ), and message
volume is highest between 9 a.m. and 10 p.m.
(fig. S1). However, “night owls,” or people most
active late at night, exhibited markedly different
rhythms in both PA and NA (fig. S3).

Despite these differences between chrono-
types, the temporal affective pattern is similarly
shaped across disparate cultures and geograph-
ic locations. Figure 2 shows diurnal rhythms
(based on local time) for four groups of countries:
United States and Canada; United Kingdom,
Australia, Ireland, and New Zealand; India; and
English-speaking Africa. Although the rhythms
across these regions are not statistically indistin-
guishable [c2(69, N = 226,777,910) = 852,557,
P < 0.001], the patterns mirror those observed in
Fig. 1: a morning rise and nighttime peak in PA,
and a sharp drop inNAduring the overnight hours.

This similarity is consistent with a biological ex-
planation based on the correspondence between
the circadian clock and sleep (20 ), but sleep
patterns in turn partially depend on the organization
of the work day and work week. For most of the
developed world, people typically work Monday
to Friday from 9 a.m. to 5 p.m. However, in the
United Arab Emirates, the traditional work week
runs Sunday to Thursday (21). This allowed for a
natural experiment: If diurnal rhythms are af-
fected by sleep schedules that are shaped by
cultural norms, we would expect Friday and
Saturday in the UAE to have higher baseline PA
and a later morning peak than during the rest of
the week. This was confirmed by the daily and
weekly pattern in the UAE, which mirror the
global patterns, with higher PA on the weekend
(Friday and Saturday;M = 0.057) than during the

work week (Sunday to Thursday;M = 0.055, P <
0.001) and a delayed PA peak on Friday and
Saturday of nearly 2 hours (M = 9:53 a.m.
versus 8:04 a.m., P < 0.001). Although the work
day in the UAE begins earlier than it does in the
west (21), the UAE does not differ in the timing
of its morning PA peak.

The importance of sleep and the biological
clock for affective rhythms may extend beyond
diurnal rhythms to seasonal patterns as well. How-
ever, like diurnal mood studies, previous research
on seasonal mood changes has relied on small
samples within single countries and is severely
constrained by the difficulty of collecting data
over an entire year (22). Clinical research has
found higher prevalence of depressive anxiety
during winter at more northern latitudes (23).
Although this was originally attributed to insuf-
ficient exposure to light (23), more recent re-
search on seasonal mood variation supports the
“phase-shift hypothesis,” which points to the im-
portance of the timing of the dawn signal to
synchronize the circadian pacemaker (24).

We therefore examined how PA and NAvary
within individuals with seasonal changes in day-
length. The length of the day at a given location
varies sinusoidally over the year, with higher-
amplitude waves the farther one moves from the
equator, resulting in long summer days and short
winter days in extreme latitudes and consistent
daylength equatorially. Daylength is modeled
using two parameters, latitude and day of the year
(25). We then used the slope of the line tangent to
the daylength curve, which indicates whether the
summer solstice (positive slope) or winter sol-
stice (negative slope) is approaching (19 ), to
measure relative change in daylength. We also
measured absolute daylength as the interval be-
tween sunrise and sunset. Figure S4 illustrates
these measures.

We found no effect of absolute daylength on
either PA (r = 3.14 × 10−5, P = 0.905) or NA (r =
–5.14 × 10−4, P = 0.052). However, as predicted
by the phase-shift hypothesis, we observed a
change in affect with relative daylength. Figure 3
shows the best-fitting line through 14.3 million
observations (affect by minutes gained or lost per
day), as well as the 95% confidence interval. (For
visual reference, we also superimposed 100 ag-
gregate observations binned by percentiles.) The
positive slope in the upper panel of Fig. 3 shows
baseline PA (averaged over each person-month)
is higher when change in daylength is positive (as
the summer solstice approaches) than when it is
negative (as the winter solstice approaches) (r =
1.21 × 10−3, P < 0.001) and is highest when
change in daylength is greatest, at the spring
equinox. In contrast, NA does not change (r =
1.86 × 10−4, P = 0.483). This result supports
survey-based findings that show seasonal changes
in PA but not NA (26), and suggests that “winter
blues” (27) is associated with diminished PA but
not increased NA.

Although the analysis of online messages
makes it possible to track changes in affect in

Fig. 3. Line of best fit through the 14.3 million person-month observations (affect by minutes gained or
lost per day). For visual reference, 100 aggregate observations binned by percentiles are superimposed.
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ways that are not feasible offline, there are al-
so important limitations. First, unlike laboratory
studies, we have little data on conditions that are
known to influence mood, including demographic
and occupational backgrounds that may influ-
ence when and howmuch people sleep, the level
and timing of environmental stress, susceptibility
to affective contagion, and access to social sup-
port. Second, lexical analysis measures the ex-
pression of affect, not the experience. Cultural
norms may regulate the appropriateness of affec-
tive expression at different times of the day or
week. Because these norms are unlikely to be uni-
versal, the robust patterns we observed across di-
verse cultures (as well as across days of the week)
give us confidence that affective expression is a
reliable indicator of diurnal individual-level var-
iations in affective state.
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Histone Lysine Demethylase JARID1a
Activates CLOCK-BMAL1 and
Influences the Circadian Clock
Luciano DiTacchio,1 Hiep D. Le,1 Christopher Vollmers,1 Megumi Hatori,1 Michael Witcher,2

Julie Secombe,3 Satchidananda Panda1*

In animals, circadian oscillators are based on a transcription-translation circuit that revolves
around the transcription factors CLOCK and BMAL1. We found that the JumonjiC (JmjC) and
ARID domain–containing histone lysine demethylase 1a (JARID1a) formed a complex with
CLOCK-BMAL1, which was recruited to the Per2 promoter. JARID1a increased histone acetylation
by inhibiting histone deacetylase 1 function and enhanced transcription by CLOCK-BMAL1 in a
demethylase-independent manner. Depletion of JARID1a in mammalian cells reduced Per promoter
histone acetylation, dampened expression of canonical circadian genes, and shortened the period of
circadian rhythms. Drosophila lines with reduced expression of the Jarid1a homolog, lid, had
lowered Per expression and similarly altered circadian rhythms. JARID1a thus has a nonredundant
role in circadian oscillator function.

To gain insight into the dynamics of chro-
matin modifications and the function of
CLOCK-BMAL1 transcription factors in

the circadian clock, we measured the state of two
histone modifications that correlate with active
transcription, acetylation of histone 3 (H3) lysine
9 (H3K9Ac), and trimethylation of H3 lysine 4

(H3K4me3) at the Per2 promoter (1). In mouse
liver, bothmodifications synchronously oscillated
at the Per2 gene promoter CLOCK-BMAL1 E2–
binding site (“E-box”) (2), with lowest amounts at
circadian time (CT, the endogenous, free-running
time) 3 hours after the onset of activity (CT3) and
peak amounts at CT12 (Fig. 1A). The peaks of
histone modification were followed by those of
Per2mRNA abundance. We also found BMAL1
abundance rhythms at the E-box, which reached
a maximum at CT9 (Fig. 1B). Histone acetyl-
transferases (HATs) and histone deacetylases
(HDACs) generate rhythms in histone acetylation
and have important roles in circadian rhythms

(3, 4). H3K4me3 modification at promoter re-
gions correlates with transcriptional potential,
which suggests that this mark helps maintain a
transcriptionally poised state (5). Recently, the
H3K4 methyltransferase MLL1 was shown to
have a necessary role in CLOCK-BMAL1–
dependent transcription (6).

We focused on a JumonjiC (JmjC) domain–
containing H3K4me3 demethylase family with
four mammalian and one insect gene members
(fig. S1). In murine liver chromatin, JARID1a
was enriched at the Per2 E-box, and its profile at
this site coincided with that of BMAL1 (Fig. 1B).
Jarid1a expression in liver did not show robust
oscillations (fig. S2), which suggested that re-
cruitment of JARID1a to the Per2 promoter might
be mediated by the circadian machinery. Indeed,
JARID1a recruitment to the Per2 promoter E-box
but not at a non–CLOCK-BMAL1 JARID1a tar-
get is reduced in Bmal1−/− cells (Fig. 1C and fig.
S17A). Consistently, immunoprecipitation of en-
dogenous CLOCK or BMAL1 from nuclear ex-
tracts copurified with endogenous JARID1a (Fig.
1D). Similarly, CLOCK and BMAL1 associated
with immunoprecipitated JARID1a (fig. S3).
Overexpression of JARID1a enhanced CLOCK-
BMAL1–mediated transcription from Per2 (Fig.
1E) and Per1 (fig. S4A) promoters in a dose-
dependent manner but failed to coactivate ex-
pression from an unrelated (E74-Luc) reporter
(fig. S4D). Furthermore, coactivation of CLOCK-
BMAL1 by JARID1a did not require its histone
demethylase activity, as JARID1a mutants that
carry a loss-of-functionmutation (H483A, inwhich
Ala replaces His483) (7) or that lack the JmjC do-
main enhanced CLOCK-BMAL1 activity, reversed
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